SAKURA ALUMNI ASSOCIATION IN INDONESIA

Summitmas Tower 2, 2nd Floor Jalan Jendral Sudirman Kav 61-62 Jakarta 12190

Tlp. +62-858-9403-7810

Fabrication and Utilization of Bottle Plastic Waste Polyethylene Terephthalate and Modification with Pebax as Membrane for H₂/CO₂ Gas Separation

Cininta Nareswari¹, Kavitaningrum¹

¹Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

Corresponding author: cininta.cn@gmail.com

Abstract- Polyethylene terephthalate (PET), a commonly used polymer in packaging, contributes to a significant environmental issue due to the disposal of millions of PET bottles daily. Dealing with the challenge of non-biodegradable PET waste is crucial. This waste, originating from PET plastic bottles, holds potential for repurposing as a thin membrane for gas separation. In this research, we fabricated a PET/Pebax membrane through flat-sheet modulation. The membrane will be used to separate H₂ from CO₂, given hydrogen's global prominence as a clean energy source due to fuel cell progress and environmental concerns like climate change. It's primarily produced through hydrocarbon steam reforming and the water-gas shift reaction. This separation of hydrogen from CO_2 is essential for obtaining pure hydrogen from syngas or water-gas shift reaction outputs. We subsequently subjected it to analysis using FTIR and Scanning Electron Microscopy (SEM) to explore its gas transportation mechanism, permeability performance, and selectiveness. SEM analysis revealed a smoother surface

SAKURA ALUMNI ASSOCIATION IN INDONESIA

Summitmas Tower 2, 2nd Floor Jalan Jendral Sudirman Kav 61-62 Jakarta 12190

Tlp. +62-858-9403-7810

and fewer cracks on the PET membrane when compared to higher Pebax concentrations. The membrane operates based on adsorption and diffusion principles. Optimal conditions for CO_2 and H_2 gasses were achieved with a 12%wt Pebax variation. The addition of Pebax led to increased selectivity for H_2/CO_2 , with values of 0.95±0.01; 2.47±0.12 ; 2.93±0.04 and 5.03±0.09 at neat, 6, 9, and 12%wt Pebax concentrations, respectively. From these results the purity of the separation of H_2 to CO_2 reached 84%.

Keywords- Polyethylene terephthalate; Pebax; Gas Separation; Flat-sheet.