日中大学フェア&フォーラム in Japan 2016

無筋建築に利用可能な超高延性セメント系複合材料

同済大学土木工程学院 構造工程•防災研究所

余江滔 兪可権

蘇州に出現した「盈創」の3D印刷建築別荘の印刷を1日で完了

http://www.yhbm.com/index.php?m=content&c=index&a=show&catid=38&id=110

高さ6.6m・幅10m・長さ150mの3Dプリンターを使い、 10棟・200㎡のセメント平屋を24時間で印刷。

建築印刷のための「インク」となるのは主に建築ゴミ・工業ゴミ・鉱滓など。 さらに主要材料としてセメントや鉄筋、特殊補助剤がある。

<u>3D印刷された世界初の商業ホテル、フィリピンに登場</u>

http://mt.sohu.com/20150920/n421629395.shtml

建設に使用された3Dプリンターは、 移動式の中世の城を米国で3D印 刷したAndrey Rudenko氏が中心と なって設計した。このプロジェクトの 仕掛け人も同氏である。

プリントに要した時間は総計100時間だが、 水道管や電線、鉄筋などの設置のため、 100時間連続で行われたわけではない。 また最初の3Dプリンターの設置には2カ 月を要した。

TU Eindhoven starts using king-size 3D concrete printer

https://www.tue.nl/en/university/news-and-press/news/22-10-2015-tu-eindhoven-startsusing-kingsize-3d-concrete-printer/

オランダのアイントホーフェンエ 科大学(TU/e)では現在、コンク リートを利用した3D印刷のテス トが行われている。 中国と米国の研究所に続く世界 第3の3Dセメント印刷実験となる。

3Dセメント印刷は、コンピューターによっ て制御される。オランダの会社がすでに、 セメント3Dプリンターの生産に乗り出して いる。価格は約10万ユーロ。3D印刷に使 うコンクリートは、材料の増強を経て初め て使用できる。セメント材料の増強は、ス チールや合成繊維、生物化学材料の添 加などを通じて行われる。

アラブ首長国連邦、建築3D印刷技術を国家戦略として確立

ドバイの副大統領で首相のムハン マド・ビン・ラシド・マクトム氏は、ア ラブ首長国連邦による3D印刷技 術の開発利用に向けた壮大な計 画を発表した。3D印刷技術は今後 10年で、世界経済に対して5500億 ドルの影響を与えるとされる。 「3D印刷技術を利用した機能建築 として、2000平方フィート(約185 m)のオフィスを建築する1

<u>ドバイ、世界初の3D印刷全機能オフィス建設へ</u>

ドバイに建設が計画されている世界初の3D印刷オフィスは、「盈創建築科技(上海)有限公司」 (Winsun)が3D印刷を請け負い、設計は「Gensler」「Thornton&Tohomasetti」「Syska Hennessy」が 共同して行う。部品やインテリアなどディテールに至るまで、大型の3Dプリンターによって作られる 成部分は、にぎやかなドバイの繁華街で組み立てられ、完成まで僅か数週間である。

無筋建築の2つの難点

- ◆ 材料問題:コンクリートは無筋建築に向いているが、延性 や強度に乏しく、単独での利用は難しい。
- ◆ 構造の分層問題

鉄筋コンクリート構造の信頼性はなぜ高いか

無筋3D印刷に利用可能な材料 但し目下性能不足

ECC(Engineered Cementitious Composites)は、変形可能な硬化セメント系材料である。ミクロ 力学の原理に基づいて設計され、低い繊維含量で超高延性を実現することをねらいとする。

曲げ可能なセメント系材料

超高延性のセメント系材料

飽和状態における微細亀裂

鉄筋並みの延性

超高度の引張強さ

超級 ECC

研究目標:これまでにないセメント系材料

超高延性/超高強度の高性能複合セメント系材料

(UHDCC, Ultra-high ductile cementitious composites)は、これまでになかった変形強 化性能を持ち、その極限抗張強度は20MPaに達し、同時に8%から10%の引張延性を 持つ。軸方向抗圧強度は120MPaに達する。

調合材料

Mixture properties of UHDCC

Cement (C) (kg/m ³)	700
Silica fume (SF) (kg/m ³)	250
Ground granulated blast furnace slag (GGBFS)(kg/m ³)	650
Silica sand (kg/m ³)	800
Water(W)(kg/m ³)	230
Fiber (kg/m ³)	20
HRWR (kg/m ³)	25
W/(C+SF+GGBFS)	0.135
W*/(C+SF+GGBFS)	0.14

Fiber properties for UHDCC

Fiber	Polyethylene
Den	4600
Length L _f , mm	12
Volume fraction V _f , %	2
Nominal strength, MPa	3000
Nominal Young's modulus, GPa	100
Elongation at break, %	2~3
Specific gravity, g/cm ³	0.97
Melting temperature, ^o C	150

Particle size distributions of GGBFS

(a) Morphology of GGBFS

(b) Morphology of silica fume

Morphology of GGBFS and silica fume

(a) Fiber fracture and surface damage (b) Fiber/matrix interface SEM images of PE fiber and fiber/matrix interface

15.0KV 9.5mm x800 SE

(a) Specimen cross section

(b) Tobermorite in one pore

SEM images of specimen matrix

ミクロ試験

UHDCC-1単繊維引き抜き試験結果統計

UHDCC-2単繊維引き抜き試験結果統計

UHDCC-3単繊維引き抜き試験結果統計

0

UHDCCの単一亀裂引張

UHDCC-1 単一亀裂引張試験結果

UHDCC-2 単一亀裂引張試験結果

90mm

75mm

63mm

Micromechanics of High-Strength, High-Ductility Concrete by Ravi Ranade, Victor C. Li, etc.

Zhang Zhigang, Zhang Qian, Qian Shunzhi., Victor C. Li., "Low E-Modulus Early Strength Engineered Cementitious Composites Material Development for Ultrathin Whitetopping Overlay", Transportation Research Record: Journal of the Transportation Research Board (TRR), No. 2481, pp. 41-47, 2015.

UHDCC-3軸引張応力変形曲線

Strain/%

Residual crack width of UHDCC

UHDCCの抗圧強度曲線

立方体抗圧試験

角柱体抗圧試験

Compressive properties of UHDCC

UHDCCの軸方向抗圧性能

試験材料	70.7mm 立方体 /MPa	100mm 立 方体 /MPa	最高抗圧強度 /MPa(角柱)	最高抗圧強度に対応する ひずみ/M <i>E</i> (Prism)	ヤング率 /GPa (Prism)
1	125.00	108.46	123.70	3582.84	38.51
2	110.51	104.77	121.06	2847.74	43.76
3	122.54	113.93	101.94	2789.98	44.61
4	126.36	112.72	119.53	3678.24	36.99
5	125.78	113.63	-	—	-
6	118.84	114.72		_	
平均值	121.50	111.38	116.56	3224.70	40.96
標準偏差	6.05	3.91	9.90	470.83	3.78
COV	0.050	0.035	0.085	0.146	0.092

UHDCCの4点梁弯曲試験

試材番号	試材名称	性質	縦方向 鉄筋	配筋率	あばら 筋
1	2@6 Concrete		2@6	0.57%	有
2	3@8 Concrete		3@8	1.51%	有
3	3@10 Concrete	普通⊐	3@10	2.36%	有
4	2@6 Concrete	ンりり ト	2@6	0.57%	無
5	3@8 Concrete		3@8	1.51%	無
6	3@10 Concrete		3@10	2.36%	無
7	Pure ECC-1		無	無	無
8	Pure ECC-2		兼	無	無
9	2@6 ECC		2@6	0.57%	有
10	3@8 ECC	UHDCC	3@8	1.51%	有
11	3@10 ECC-S		3@10	2.36%	無
12	3@8 ECC-S		3@8	1.51%	無
13	3@10 ECC-S		3@10	2.36%	無

無筋UHDCC梁(600x100x100mm)

配筋率1.5%の鉄筋コンクリート(600x100x100mm)

1. <mark>純UHDCC梁</mark> の抗弯強度は、配筋率
1.5%の普通梁に相当する。延性に優れ、
たわみ・支点間距離比はL/30である。
2. <mark>配筋されたUHDCC梁</mark> に曲げ作用をか
けると、UHDCC材料と鉄筋が相互に作
用し、亀裂がより周密で細かくなり、鉄筋
の亀裂による応力波動の程度が減少し、
延性が向上し、たわみ・支点間距離比は
L/20に達する

3.純UHDCC梁はせん断破壊が比較的起 こりやすい。せん断破壊は、純UHDCC梁 の延性に影響を与える主要原因である。

結論

- 普通鉄筋コンクリート家屋の強度と信頼性に到達するためには、「無筋 家屋」は、高強度と高延性の材料を採用する必要がある。
- 現在、Engineered Cementitious Composites(ECC)は、その要求に近い
 唯一のセメント系材料である。
- 3. より高い延性を備えたECC材料であるUHDCC的の抗張強度は5MPa~ 20MPaで、最高引張変形は8%以上に達し、抗圧強度は100MPaを超え、無 筋建築への応用の潜在力を備えている。
- 4. UHDCCを採用した無筋梁の抗弯曲性能は、配筋率1.5%の普通鉄筋ク リート梁に匹敵し、さらに良好な延性を示す。無筋建築の初期の成功事例と 言える。

・ありがとうございました

・専門家の皆様の貴重な

ご意見をお待ちしております